Consideraremos temas asumidos a la Electrónica, en principio Electrónica básica, que a día de hoy se ha convertido en un factor determinante dentro de la "neo-tecnología". En primer término, es una ciencia dentro de la física basada en semiconductores y sus circuitos electrónicos y más detalladamente aún los circuitos electrónicos integrados, poseen uniones como lo son los diodos, transistores, tiristores, etc. Y también la formación de circuitos electrónicos básicos como Amplificadores, Osciladores, Multivibradores, Convertidores, entre otros, y algunos componentes pasivos como las resistencias, condensadores, bobinados.
La Electrónica se puede dividir en dos grandes grupos: la electrónica analógica y la electrónica digital.
En esta web trataremos de detallar cada uno de los item ya dados y también tendremos un blog sobre electrónica que tendrá artículos relacionados con ésta y de actualidad.
lunes, 16 de agosto de 2010
electronica básica analogica
La electrónica analógica considera y trabaja con valorescontinuos pudiendo tomar valores infinitos, podemos acotar que trata con señales que cambian en el tiempo de forma continua porque estudia los estados de conducción y no conducción de los diodos y los transistores que sirven para diseñar cómputos en el algebra con las cuales se fabrican los circuitos integrados.
La Electrónica Analógica abarca muchos campos como por ejemplo, la electrónica analógica dinámica que trata de un circuito que traslada hondas o vibraciones a un sistema eléctrico, la analógica hidráulica la cual es existente entre una corriente del aguade superficie plana o un flujo bidimensional como ejemplo un reloj, el cual tiende a tene4r engranaje de diferentes tipos los cuales son movidos por un conductor el mueve los engranajes que son diferentes tamaños pero cada uno para una función especifica como la de los segundos, minutos y horas.
También podemos decir que la electrónica analógica define campos más específicos tales como:
•Conducción de semiconductores.
•Diodos
•Circuitos con diodos.
•Transistor biopolar
•Etapas transistoradas.
•Transistores de efecto de campo.
•Amplificación y retroalimentación.
•Amplificador operacional (I).
•Amplificador operacional (II).
•Otros sistemas amplificadores
•Otros sistemas analógicos
•Filtros activos.
La Electrónica Analógica abarca muchos campos como por ejemplo, la electrónica analógica dinámica que trata de un circuito que traslada hondas o vibraciones a un sistema eléctrico, la analógica hidráulica la cual es existente entre una corriente del aguade superficie plana o un flujo bidimensional como ejemplo un reloj, el cual tiende a tene4r engranaje de diferentes tipos los cuales son movidos por un conductor el mueve los engranajes que son diferentes tamaños pero cada uno para una función especifica como la de los segundos, minutos y horas.
También podemos decir que la electrónica analógica define campos más específicos tales como:
•Conducción de semiconductores.
•Diodos
•Circuitos con diodos.
•Transistor biopolar
•Etapas transistoradas.
•Transistores de efecto de campo.
•Amplificación y retroalimentación.
•Amplificador operacional (I).
•Amplificador operacional (II).
•Otros sistemas amplificadores
•Otros sistemas analógicos
•Filtros activos.
transistores
Los transistores son unos elementos que han facilitado, en gran medida, el diseño de circuitos electrónicos de reducido tamaño, gran versatilidad y facilidad de control.
Vienen a sustituir a las antiguas válvulas termoiónicas de hace unas décadas. Gracias a ellos fue posible la construcción de receptores de radio portátiles llamados comúnmente "transistores", televisores que se encendían en un par de segundos, televisores en color... Antes de aparecer los transistores, los aparatos a válvulas tenían que trabajar con tensiones bastante altas, tardaban más de 30 segundos en empezar a funcionar, y en ningún caso podían funcionar a pilas, debido al gran consumo que tenían.
Los transistores tienen multitud de aplicaciones, entre las que se encuentran:
Amplificación de todo tipo (radio, televisión, instrumentación)
Generación de señal (osciladores, generadores de ondas, emisión de radiofrecuencia)
Conmutación, actuando de interruptores (control de relés, fuentes de alimentación conmutadas, control de lámparas, modulación por anchura de impulsos PWM)
Detección de radiación luminosa (fototransistores)
Los transistores de unión (uno de los tipos más básicos) tienen 3 terminales llamados Base, Colector y Emisor, que dependiendo del encapsulado que tenga el transistor pueden estar distribuidos de varias formas.
Vienen a sustituir a las antiguas válvulas termoiónicas de hace unas décadas. Gracias a ellos fue posible la construcción de receptores de radio portátiles llamados comúnmente "transistores", televisores que se encendían en un par de segundos, televisores en color... Antes de aparecer los transistores, los aparatos a válvulas tenían que trabajar con tensiones bastante altas, tardaban más de 30 segundos en empezar a funcionar, y en ningún caso podían funcionar a pilas, debido al gran consumo que tenían.
Los transistores tienen multitud de aplicaciones, entre las que se encuentran:
Amplificación de todo tipo (radio, televisión, instrumentación)
Generación de señal (osciladores, generadores de ondas, emisión de radiofrecuencia)
Conmutación, actuando de interruptores (control de relés, fuentes de alimentación conmutadas, control de lámparas, modulación por anchura de impulsos PWM)
Detección de radiación luminosa (fototransistores)
Los transistores de unión (uno de los tipos más básicos) tienen 3 terminales llamados Base, Colector y Emisor, que dependiendo del encapsulado que tenga el transistor pueden estar distribuidos de varias formas.
electromagnetismo
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.
El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.
el magnetismo
El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz
El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz
circcuitos electronicos
Antes de explicar lo que es un circuito electrónico, daremos un repaso a lo que es un circuito eléctrico primero. Cuando estás usando una batería, un grupo electrógeno o una placa solar para producir electricidad, hay tres cosas que siempre son iguales:
El origen de la electricidad tendrá dos terminales: un terminal positivo y un terminal negativo.
El origen del flujo eléctrico – ya sea un generador, batería, etc. – querrá empujar los electrones fuera de su terminal negativo a un cierto voltaje. Por ejemplo, una pila AA normalmente quiere empujar esos electrones a 1,5 voltios.
Los electrones tendrán que fluir desde el terminal negativo al terminal positivo por medio de un cable de cobre u otro tipo de conductor. Cuando hay un camino que va desde el terminal negativo al positivo, tienes un circuito, y los electrones pueden fluir por el cable.
Puedes incluir una carga de cualquier tipo (una bombilla, un motor, una televisión, etc.), en el centro del circuito. La fuente de electricidad alimentará la carga, y la carga hará su función (crear luz, generar imágenes, arrancar un motor, etc.).
Los circuitos electrónicos se pueden volver muy complejos, pero a un nivel muy básico, siempre tienes la fuente de la electricidad (batería), la carga y dos cables para conducir la electricidad entre la batería y la carga. Los electrones se mueven desde el origen, por la carga y de vuelta al origen.
Los electrones que se mueven tienen energía. Según los electrones se mueven de un punto a otro, pueden realizar un trabajo. Por ejemplo, en una bombilla de filamento incandescente, la energía de los electrones se usa para crear calor, y el calor a su vez para crear luz. En un motor eléctrico, la energía en los electrones crea un campo magnético, y este campo puede interactuar con otros (por atracción y repulsión magnética) para crear movimiento.
El origen de la electricidad tendrá dos terminales: un terminal positivo y un terminal negativo.
El origen del flujo eléctrico – ya sea un generador, batería, etc. – querrá empujar los electrones fuera de su terminal negativo a un cierto voltaje. Por ejemplo, una pila AA normalmente quiere empujar esos electrones a 1,5 voltios.
Los electrones tendrán que fluir desde el terminal negativo al terminal positivo por medio de un cable de cobre u otro tipo de conductor. Cuando hay un camino que va desde el terminal negativo al positivo, tienes un circuito, y los electrones pueden fluir por el cable.
Puedes incluir una carga de cualquier tipo (una bombilla, un motor, una televisión, etc.), en el centro del circuito. La fuente de electricidad alimentará la carga, y la carga hará su función (crear luz, generar imágenes, arrancar un motor, etc.).
Los circuitos electrónicos se pueden volver muy complejos, pero a un nivel muy básico, siempre tienes la fuente de la electricidad (batería), la carga y dos cables para conducir la electricidad entre la batería y la carga. Los electrones se mueven desde el origen, por la carga y de vuelta al origen.
Los electrones que se mueven tienen energía. Según los electrones se mueven de un punto a otro, pueden realizar un trabajo. Por ejemplo, en una bombilla de filamento incandescente, la energía de los electrones se usa para crear calor, y el calor a su vez para crear luz. En un motor eléctrico, la energía en los electrones crea un campo magnético, y este campo puede interactuar con otros (por atracción y repulsión magnética) para crear movimiento.
circuitos electricos
Es tan común la aplicación del circuito eléctrico en nuestros días que tal vez no le damos la importancia que tiene. El automóvil, la televisión, la radio, el teléfono, la aspiradora, las computadoras y videocaseteras, entre muchos y otros son aparatos que requieren para su funcionamiento, de circuitos eléctricos simples, combinados y complejos. (Ver: Historia del circuito eléctrico)
Pero ¿qué es un circuito eléctrico? Se denomina así el camino que recorre una corriente eléctrica. Este recorrido se inicia en una de las terminales de una pila, pasa a través de un conducto eléctrico (cable de cobre), llega a una resistencia (foco), que consume parte de la energía eléctrica; continúa después por el conducto, llega a un interruptor y regresa a la otra terminal de la pila.
Los elementos básicos de un circuito eléctrico son: Un generador de corriente eléctrica, en este caso una pila; los conductores (cables o alambre), que llevan a corriente a una resistencia foco y posteriormente al interruptor, que es un dispositivo de control.
Todo circuito eléctrico requiere, para su funcionamiento, de una fuente de energía, en este caso, de una corriente eléctrica.
¿Qué es la corriente eléctrica? Recibe este nombre el movimiento de cargas eléctricas (electrones) a través de un conducto; es decir, que la corriente eléctrica es un flujo de electrones.
¿Qué es un interruptor o apagador? No es más que un dispositivo de control, que permite o impide el paso de la corriente eléctrica a través de un circuito, si éste está cerrado y que, cuando no lo hace, está abierto.
Existen otros dispositivos llamados fusibles, que pueden ser de diferentes tipos y capacidades. ¿Qué es un fusible? Es un dispositivo de protección tanto para ti como para el circuito eléctrico.
Sabemos que la energía eléctrica se puede transformar en energía calorífica. Hagamos una analogía, cuando hace ejercicio, tu cuerpo está en movimiento y empiezas a sudar, como consecuencia de que está sobrecalentado. Algo similar sucede con los conductores cuando circula por ellos una corriente eléctrica (movimiento de electrones) y el circuito se sobrecalienta. Esto puede ser producto de un corto circuito, que es registrado por el fusible y ocasiona que se queme o funda el listón que está dentro de el, abriendo el circuito, es decir impidiendo el paso de corriente para protegerte a ti y a la instalación.
Recuerda que cada circuito presenta Características Particulares. Obsérvalas, compáralas y obtén conclusiones sobre los circuitos eléctricos.
Los circuitos eléctricos pueden estar conectados en serie, en paralelo y de manera mixta, que es una combinación de estos dos últimos.
Pero ¿qué es un circuito eléctrico? Se denomina así el camino que recorre una corriente eléctrica. Este recorrido se inicia en una de las terminales de una pila, pasa a través de un conducto eléctrico (cable de cobre), llega a una resistencia (foco), que consume parte de la energía eléctrica; continúa después por el conducto, llega a un interruptor y regresa a la otra terminal de la pila.
Los elementos básicos de un circuito eléctrico son: Un generador de corriente eléctrica, en este caso una pila; los conductores (cables o alambre), que llevan a corriente a una resistencia foco y posteriormente al interruptor, que es un dispositivo de control.
Todo circuito eléctrico requiere, para su funcionamiento, de una fuente de energía, en este caso, de una corriente eléctrica.
¿Qué es la corriente eléctrica? Recibe este nombre el movimiento de cargas eléctricas (electrones) a través de un conducto; es decir, que la corriente eléctrica es un flujo de electrones.
¿Qué es un interruptor o apagador? No es más que un dispositivo de control, que permite o impide el paso de la corriente eléctrica a través de un circuito, si éste está cerrado y que, cuando no lo hace, está abierto.
Existen otros dispositivos llamados fusibles, que pueden ser de diferentes tipos y capacidades. ¿Qué es un fusible? Es un dispositivo de protección tanto para ti como para el circuito eléctrico.
Sabemos que la energía eléctrica se puede transformar en energía calorífica. Hagamos una analogía, cuando hace ejercicio, tu cuerpo está en movimiento y empiezas a sudar, como consecuencia de que está sobrecalentado. Algo similar sucede con los conductores cuando circula por ellos una corriente eléctrica (movimiento de electrones) y el circuito se sobrecalienta. Esto puede ser producto de un corto circuito, que es registrado por el fusible y ocasiona que se queme o funda el listón que está dentro de el, abriendo el circuito, es decir impidiendo el paso de corriente para protegerte a ti y a la instalación.
Recuerda que cada circuito presenta Características Particulares. Obsérvalas, compáralas y obtén conclusiones sobre los circuitos eléctricos.
Los circuitos eléctricos pueden estar conectados en serie, en paralelo y de manera mixta, que es una combinación de estos dos últimos.
electricidad
La electricidad es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros, en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.
La electricidad en una de sus manifestaciones naturales: el relámpago.La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.
La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM)
Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.
La electricidad en una de sus manifestaciones naturales: el relámpago.La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.
La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM)
Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental
teoria atomica
En física y química, la teoría atómica es una teoría de la naturaleza de la materia, que afirma que está compuesta por pequeñas partículas llamadas átomos.
La teoría atómica comenzó hace miles de años como un concepto filosófico, y fue en el siglo XIX cuando logró una extensa aceptación científica gracias a los descubrimientos en el campo de la estequiometría. Los químicos de la época creían que las unidades básicas de los elementos también eran las partículas fundamentales de la naturaleza y las llamaron átomos (de la palabra griega atomos, que significa "indivisible"). Sin embargo, a finales de aquel siglo, y mediante diversos experimentos con el electromagnetismo y la radiactividad, los físicos descubrieron que el denominado "átomo indivisible" era realmente un conglomerado de diversas partículas subatómicas (principalmente electrones, protones y neutrones), que pueden existir de manera separada. De hecho, en ciertos ambientes, como en las estrellas de neutrones, la temperatura extrema y la elevada presión impide a los átomos existir como tales. El campo de la ciencia que estudia las partículas fundamentales de la materia se denomina física de partículas.
La teoría atómica comenzó hace miles de años como un concepto filosófico, y fue en el siglo XIX cuando logró una extensa aceptación científica gracias a los descubrimientos en el campo de la estequiometría. Los químicos de la época creían que las unidades básicas de los elementos también eran las partículas fundamentales de la naturaleza y las llamaron átomos (de la palabra griega atomos, que significa "indivisible"). Sin embargo, a finales de aquel siglo, y mediante diversos experimentos con el electromagnetismo y la radiactividad, los físicos descubrieron que el denominado "átomo indivisible" era realmente un conglomerado de diversas partículas subatómicas (principalmente electrones, protones y neutrones), que pueden existir de manera separada. De hecho, en ciertos ambientes, como en las estrellas de neutrones, la temperatura extrema y la elevada presión impide a los átomos existir como tales. El campo de la ciencia que estudia las partículas fundamentales de la materia se denomina física de partículas.
Suscribirse a:
Entradas (Atom)